

Gd₁₃Fe₁₀C₁₃: Indications of Fe–Fe Multiple Bonding Emerging from Chemical Frustration

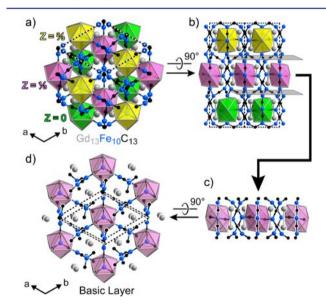
Amelia B. Hadler and Daniel C. Fredrickson*

Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States

Supporting Information

ABSTRACT: We report the synthesis and crystal structure of the carbide $Gd_{13}Fe_{10}C_{13}$. This compound adopts a new structure type that is remarkable for its "H"-shaped C_2FeFeC_2 units, which have some of the shortest Fe–Fe contacts known. A bonding analysis using DFT-calibrated Hückel calculations hints that Fe–Fe multiple bonding underlies these short distances. $Gd_{13}Fe_{10}C_{13}$ undergoes ferromagnetic ordering at ~55 K.

Intermetallic phases are one of the remaining frontiers of bonding interactions;¹ exploratory synthesis continues to reveal new phases that expand the mechanisms by which atoms stabilize their valence electrons. The carbides of intermetallics are particularly rich in this regard,² as their crystal structures must satisfy the competing requirements of metal–metal and metal–carbon bonding. While many intermetallics are built from packings of tetrahedra, carbon prefers to occupy larger spaces within metallic lattices, such as octahedral holes.³ Intriguing bonding units often emerge from this frustration. Examples include the rare C_3^{4-} anions first found in $Sc_3C_4^{-2b.4}$ and later seen in $Ca_2LiC_3H_i^{-5}$ the isolated Fe₄ tetrahedra showing spin-glass behavior in $La_{21}Fe_8Sn_7C_{12}$;⁶ and the planar Fe₆ clusters in $Er_{15}Fe_8C_{25}$.⁷ $Er_{15}Fe_8C_{25}$ and other rare-earth–transition-metal–carbon (RE–TM–C) phases exhibit donor–acceptor TM–RE bonds similar to those seen in bimetallic molecular complexes.^{2f,h}

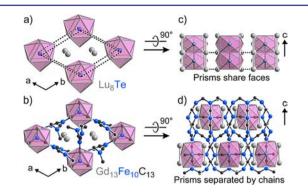

Herein we describe hints of another bonding type that can emerge from the conflict of metal-metal and metal-carbon interactions: metal-metal multiple bonding. The crystal structure of the new phase $Gd_{13}Fe_{10}C_{13}$ (Figure 1) exhibits "H"-shaped C_2FeFeC_2 clusters whose Fe–Fe distances of 2.36– 2.38 Å are among the shortest Fe–Fe contacts observed to date. Electronic structure calculations indicate that these short distances may reflect an Fe–Fe bond order near 2. Such multiple bonds between late first-row TM atoms are unusual within not only intermetallics and carbides but also coordination and organometallic chemistry.⁸

The rich structural chemistry of intermetallic carbides inspired us to pursue new phases in these systems through exploratory synthesis. The phase diagrams of many of the RE–TM–C systems provide useful launching points for such investigations. The phase diagram of the Gd–Fe–C system, for example, lists the six ternary phases $Gd_2Fe_{14}C$, $Gd_2Fe_{17}C_2$, $GdFe_2C_2$, $Gd_2Fe_2C_3$, $Gd_4Fe_4C_7$, and GdFeC, with the crystal structures of only the first two being known.^{9,10}

In an attempt to synthesize one of these phases with an unknown structure, GdFeC, we arc-melted pellets of elemental

Gd, Fe, and C and annealed them at 900 °C for 350 h. Crushing the resulting gray metallic ingots yielded crystals having a primitive trigonal cell with a = 9.247(3) Å and c = 23.713(8) Å.¹¹ Metric similarities to the 9.12 Å × 5.97 Å hexagonal cell reported for GdFeC as well as matches in some of the peaks in the powder X-ray diffraction patterns suggested that these were indeed crystals of the phase previously identified as GdFeC.

Structure solution and refinement using single-crystal X-ray diffraction revealed a new structure type. Application of the charge-flipping algorithm¹² yielded the positions of the metal atoms, and the C positions were subsequently found in the Fourier difference map, to give the stoichiometry $Gd_{13}Fe_{10}C_{13}$. The compound's structure is most easily described in terms of Fe-centered tricapped trigonal prisms (TTPs) of Gd atoms oriented along *c* (Figure 1a). A side view of the structure shows


Figure 1. Crystal structure of $Gd_{13}Fe_{10}C_{13}$ (a) shown down *c* to emphasize hexagonal layers of TTPs. (b) Rotation by 90° reveals an Fe–C matrix separating the prism layers. (c) A single layer is extracted and (d) rotated to show the contents of the basic layer.

that the TTPs are situated in layers stacked along c (Figure 1b). Each layer can be divided geometrically into three components: TTPs, pairs of Gd atoms that trace honeycomb nets around each TTP, and an Fe–C network (Figure 1c,d).

Received:
 April 17, 2012

 Published:
 June 7, 2012

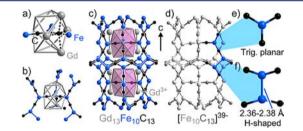
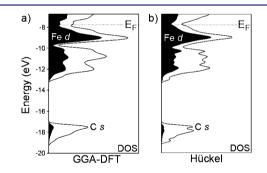

The Gd forms a sublattice reminiscent of Lu_8Te (Figure 2a), which itself adopts a variant of the Fe_2P type.¹³ As shown in

Figure 2. Comparison of (a) Lu_8Te and (b) $Gd_{13}Fe_{10}C_{13}$. (c) Layers of TTPs share faces along *c* in Lu_8Te , while (d) the carbide matrix in $Gd_{13}Fe_{10}C_{13}$ prevents the prism layers from fusing.

Figure 2a,b, Te- or Fe-centered RE prisms and RE dumbbells form the same pattern in both phases. However, while the prisms in Lu₈Te share triangular faces with those in the neighboring layers (Figure 2c), in $Gd_{13}Fe_{10}C_{13}$ an Fe–C network surrounds the prisms, preventing them from sharing faces and separating the layers (Figure 2d).

This intrusive carbide network can be imagined as extending from the Fe atoms centering the TTPs oriented along *c*. Each of these Fe sites is coordinated by three C atoms in a trigonal-planar Fe geometry (Figure 3a). Each of these carbons is bound to an

Figure 3. Fe–C network in $Gd_{13}Fe_{10}C_{13}$. (a) The square face of a TTP provides an octahedral site for a C atom. (b) Fe–C chains form from the prism-centering Fe atoms. (c) Prisms in adjacent layers are surrounded by the Fe–C matrix. (d) The $[Fe_{10}C_{13}]^{39-}$ network, shown in gray. (e) FeC₃ units are found within prism layers, while (f) C₂FeFeC₂ units appear at the interfaces between layers.


additional Fe, forming an octahedral C site at the Gd prism face and causing vertical elongation of the prism. The Fe atoms outside the prism center new FeC_3 planes perpendicular to the first (Figure 3b), yielding a paddlewheel-shaped fragment. Filling the coordination spheres of these C atoms and the resulting Fe atoms creates the carbide matrix shown in Figure 3c,d and leads to the formation of close Fe—Fe contacts at the interfaces of adjacent layers (Figure 3f).

As for many other carbide phases, the carbometalate concept provides a framework for understanding the bonding and electronic structure of this phase.^{2d,f,14} The Gd atoms can be viewed *formally* as Gd³⁺ cations, leaving the Fe and C atoms to form an anionic network with composition $[Fe_{10}C_{13}]^{39-}$ (Figure 3d).¹⁵ Since there is no C–C bonding, all of the carbons are assigned as C^{4–} anions, leaving 10 Fe atoms per formula unit to carry the remaining charge of +13, for an average Fe charge of +1.3. These 10 Fe atoms are distributed over sites with two types

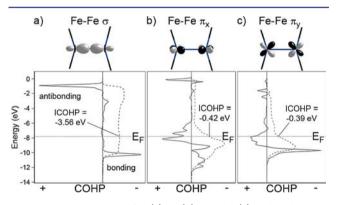
of coordination geometries (Figure 3e,f). Six of them, including those centering prisms, are coordinated in a trigonal plane to three C and no Fe atoms. The remaining four are paired into H-shaped Fe_2C_4 units in which each Fe is bound to two C atoms and one Fe atom, forming a local fragment reminiscent of a molecular Fe–Fe complex.

Two symmetry-inequivalent C₂FeFeC₂ units occur in the structure, both with surprisingly short Fe-Fe contacts: 2.362(2) Å (Fe3-Fe3) and 2.381(2) Å (Fe5-Fe5). Such short, localized Fe-Fe contacts are uncommon among both carbides and TM complexes. A few carbides have comparable Fe-Fe distances $(RE_2Fe_{17}C_{3-x}, 2.37 \text{ Å}; RE_2Fe_{14}C, 2.40 \text{ Å})$, but these contacts are part of a larger intermetallic framework and do not represent localized bonds.¹⁶ The Fe–Fe bonds in carbides with isolated Fe clusters are significantly longer (La₂₁Fe₈Sn₇C₁₂, 2.55 Å; Er₁₅Fe₈C₂₆, 2.56 Å) and have bridging carbon atoms.^{6,7} The Fe–Fe distances in $Gd_{13}Fe_{10}C_{13}$ are also short relative to those observed for TM complexes. Unsupported Fe-Fe distances usually lie in the range 2.68-3.14 Å,¹⁷ but Lei et al.¹⁸ recently reported the compound $(\eta^5 - C_5 H_5)(CO)_2$ FeFeAr [Ar = 3,5-^{*i*}Pr₂-2,6-(2,4,6-ⁱPr₃C₆H₂)₂C₆H] containing an unbridged Fe-Fe bond with a length of 2.39 Å. Moving to shorter Fe-Fe bond distances appears to require the explicit constraints of bidentate ligands, as in the 2.20 Å Fe-Fe bond of the coordination complex $Fe_2(N_iN'$ -diphenylbenzamidinato)₃ reported by Cotton et al.¹⁹

As a first step in understanding the Fe–Fe interactions at these close contacts, we performed GGA–DFT band structure calculations on $Gd_{13}Fe_{10}C_{13}$ using the Vienna Ab Initio Simulation Package [see the Supporting Information (SI) for details].²⁰ As shown in Figure 4a, the non-spin-polarized

Figure 4. Non-spin-polarized DOS curves calculated for $Gd_{13}Fe_{10}C_{13}$ with (a) GGA–DFT and (b) a DFT-calibrated Hückel model. Partial DOS curves for Fe d states are shaded.

electronic density of states (DOS) distribution exhibits a pseudogap at the Fermi energy ($E_{\rm F}$), a feature commonly associated with special stability of an intermetallic phase. The $E_{\rm F}$ straddles larger DOS features that are relatively rich in Fe d character, consistent with our earlier assignment of the Fe charges as between +2 (Fe 3d⁶) and +1 (Fe 3d⁷). The pseudogap at the $E_{\rm F}$ also suggests that there should be little contribution from Fe to any magnetic properties for this phase. Indeed, spin-polarized calculations (keeping the Gd 4f as a part of the pseudopotential core to make the calculations feasible) revealed little tendency for magnetic ordering on the Fe sites.

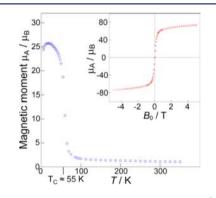

To explain these short Fe–Fe contacts, a simple Hückel model was parametrized against the DFT bands and projected DOS curves using our program eHtuner.²¹ The resulting Hückel model shows strong quantitative agreement with the DFT band energies (with a root-mean-square deviation of 0.06 eV up to 1 eV above the $E_{\rm F}$) and the DOS pseudogap at the $E_{\rm F}$ (Figure 4b).

In essence, then, the Hückel model allows for an orbital-based interpretation of the DFT electronic structure.

Crystal-orbital Hamiltonian populations $(\text{COHPs})^{22}$ calculated using this Hückel model revealed that the DOS pseudogap separates bonding states from antibonding ones for the Fe–Fe, Fe–C, Fe–Gd, and Gd–C interactions, all of which are nearly optimized at the $E_{\rm F}$ (see the SI). This supports a carbometalate view of the phase in which Gd³⁺ cations stabilize Fe- and C-based energy levels (with contacts in the ranges 2.81–3.33 and 2.44–2.76 Å, respectively). Meanwhile, C^{4–} anions form coordinate bonds with the Fe atoms (with lengths of 1.79–1.88 Å), and substantial Fe–Fe bonding occurs at the short contacts mentioned above.

What remain unresolved are the electron configurations of the Fe atoms. For the trigonal-planar Fe sites (Figure 3e), σ interactions with the surrounding C atoms would destabilize two of the five d orbitals (d_{xy} and $d_{x^2-y^2}$ using a local coordinate system in which z is perpendicular to the trigonal plane). This would lead to a preferred electron configuration of low-spin 3d⁶ with a formal oxidation state of 2+, which is consistent with the lack of magnetic ordering at these sites observed in our spin-polarized calculations. Indeed, 2+ is a common oxidation state for Fe in trigonal-planar complexes.²³ As these account for six of the 10 Fe atoms in the formula unit, such bookkeeping leads us to the formal charges (Gd³⁺)₁₃(Fe²⁺)₆(Fe^{0.25+})₄(C⁴⁻)₁₃.

The remaining Fe atoms in the H-shaped units are then assigned a formal charge of 0.25, corresponding to a $3d^{7.75}$ electron configuration. From this point of view, the form of the Fe–Fe interactions between these sites can be readily interpreted using COHP analysis. The COHP curves for the σ and two π components of the Fe–Fe interactions at one of the Fe₂ units in the structure (between Fe5 sites) are shown in Figure 5 (the


Figure 5. COHP analysis for (a) σ_{i} (b) π_{xi} and (c) π_{y} bonding in a C₂FeFeC₂ fragment of Gd₁₃Fe₁₀C₁₃. Integrated COHP (ICOHP) values are shown.

curves for the Fe3 site, which have comparable features, are given in the SI). The Fe–Fe σ bonding is nearly optimized at the $E_{\rm F}$, indicating that a full single bond exists between the two atoms (Figure 5a).

The two Fe–Fe π interactions (Figure 5b,c) are less optimized; part of the antibonding region for both the π_x and π_y interactions lies below $E_{\rm F}$. However, integration of the COHP curves revealed that in both cases, roughly half of the full stabilization energy possible from these π interactions is retained at the $E_{\rm F}$. Each π interaction can thus be described as roughly a half bond, with the overall bond order approaching 2. The overall integrated π -bonding strength is ~0.8 eV, a little less than a quarter of that associated with the σ bond. This can be rationalized as arising from the weaker overlap for π interactions and the significant torsion angles of 39.3–40.2° at the Fe–Fe contacts.

The character of the Fe–Fe interaction, the Fe $3d^{7.75}$ configuration, and the overall geometry of the C₂Fe=FeC₂ units can also be derived through a simple analogy to coordination chemistry. Within a C₂Fe=FeC₂ unit, each Fe atom is coordinated in a nearly linear fashion by two C atoms. Such linear coordination is common for complexes of d^{10} cations, e.g. Cu⁺, Ag⁺, and Au⁺.²⁴ Removing electrons from the d orbitals of such cations introduces the potential for metal–metal bonds to form upon dimerization of these linear units. Pairing of d⁹ cations would lead to single bonds, d⁸ cations to double bonds, and d⁷ cations to triple bonds. For the d^{7.75} configuration of the Fe atoms in the C₂Fe=FeC₂ fragments, a double bond would thus be expected. The population of π antibonding states in the COHP curves indicates that this double bond emerges through the addition of electrons to the triple bond of the d⁷–d⁷ pair.

For reasons of computational feasibility, we have not yet considered the possibility of magnetic ordering on the Gd sublattice. Magnetization measurements (Figure 6) revealed that

Figure 6. Magnetic property measurements on a sample containing $Gd_{13}Fe_{10}C_{13}$ as the major phase. Main figure: Magnetic moment as a function of temperature. Inset: Hysteresis curve measured at 6 K.

 $Gd_{13}Fe_{10}C_{13}$ exhibits magnetic ordering below ~55 K, yielding a soft ferromagnet with a saturation moment of ~82 μ_B per formula unit at 6 K. The large size of this moment suggests that Gd^{3+} cations are the major contributors. Significant deviations from Curie–Weiss behavior were observed, as is common for ferromagnetic materials containing multiple symmetry-inequivalent magnetic atoms.²⁵ Variability in the magnetic susceptibilities of samples above the Curie temperature and some residual ferromagnetic matrites.

In summary, $Gd_{13}Fe_{10}C_{13}$ crystallizes in a new carbide structure type consisting of Fe₂P-type layers of Gd TTPs interwoven with an Fe–C matrix. The carbide matrix features C_2FeFeC_2 units with Fe–Fe bond lengths of 2.36–2.38 Å, making this compound a unique expression of iron's chemistry. We have rationalized these contacts by evoking multiple bonds. However, multiple bonds between first-row TM atoms are challenging to model using DFT.²⁶ The Fe=Fe contacts in this phase are no exception: our attempts to optimize the geometry of this structure led to shrinkage of these contacts by ~0.14 Å. Through continued experimental and computational characterization of this phase, we will investigate whether such deviations arise from limitations of the exchange–correlation functional or reflect spin ordering of the Fe atoms.

Journal of the American Chemical Society

The unusual Fe–Fe bonding in this phase is likely a consequence of the conflict between metal–metal and metal– carbon bonding that underpins complexity in intermetallic carbides. As mentioned above, these two bonding types have preferences for tetrahedral and simple periodic packing, respectively—packing modes known empirically to be incompatible.²⁷ Ternary metal carbides are faced with the issue of reconciling this incompatibility, a tension that can be interpreted as *chemical frustration*.²⁸ Further investigation of RE–TM–C systems is likely to reveal additional carbide structures with unusual bonding emerging from this conflict.

ASSOCIATED CONTENT

S Supporting Information

Experimental and computational methods, characterization data, and additional results. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

danny@chem.wisc.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We have enjoyed engaging discussions with Prof. John Berry regarding the difficulties of computational modeling of metalmetal bonds. We are also grateful to Dr. Ilia Guzei for collecting and processing single-crystal X-ray diffraction data, Rachel Selinsky for guidance with magnetic property measurements, and Drs. John Fournelle and Hiromi Konishi for assistance with EDS and powder X-ray diffraction measurements, respectively. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. This research involved calculations using computer resources supported by NSF Grant CHE-0840494. We gratefully acknowledge financial support from the DOE Office of Science Early Career Program (DE-SC0003947) through the Office of Basic Energy Sciences, and from the University of Wisconsin through startup funds.

REFERENCES

(1) Nesper, R. Angew. Chem., Int. Ed. Engl. 1991, 30, 789.

(2) (a) Hoffmann, R.; Li, J.; Wheeler, R. A. J. Am. Chem. Soc. 1987, 109, 6600. (b) Hoffmann, R.; Meyer, H. J. Z. Anorg. Allg. Chem. 1992, 607, 57. (c) King, R. B. J. Organomet. Chem. 1997, 536, 7. (d) Pohlkamp, M. W.; Hoffmann, R. D.; Kotzyba, G.; Jeitschko, W. J. Solid State Chem. 2001, 160, 77. (e) Merschrod, E. F. S.; Courtney, A.; Hoffmann, R. Z. Anorg. Allg. Chem. 2002, 628, 2757. (f) Dashjav, E.; Kreiner, G.; Schnelle, W.; Wagner, F. R.; Kniep, R.; Jeitschko, W. J. Solid State Chem. 2007, 180, 636. (g) Rohrmoser, B.; Eickerling, G.; Presnitz, M.; Scherer, W.; Eyert, V.; Hoffmann, R. D.; Rodewald, U. C.; Vogt, C.; Pöttgen, R. J. Am. Chem. Soc. 2007, 129, 9356. (h) Dashjav, E.; Prots, Y.; Kreiner, G.; Schnelle, W.; Wagner, F. R.; Kniep, R. J. Solid State Chem. 2008, 181, 3121. (i) Vogt, C.; Hoffmann, R. D.; Rodewald, U. C.; Eickerling, G.; Presnitz, M.; Eyert, V.; Scherer, W.; Pöttgen, R. Inorg. Chem. 2009, 48, 6436. (j) Scherer, W.; Hauf, C.; Presnitz, M.; Scheidt, E. W.; Eickerling, G.; Eyert, V.; Hoffmann, R. D.; Rodewald, U. C.; Hammerschmidt, A.; Vogt, C.; Pöttgen, R. Angew. Chem., Int. Ed. 2010, 49, 1578.

(3) Yvon, K.; Parthé, E. Acta Crystallogr. 1970, B26, 149.

(4) Pöttgen, R.; Jeitschko, W. Inorg. Chem. 1991, 30, 427.

(5) Lang, D. A.; Zaikina, J. V.; Lovingood, D. D.; Gedris, T. E.;

Latturner, S. E. J. Am. Chem. Soc. 2010, 132, 17523.

(6) Benbow, E. M.; Dalal, N. S.; Latturner, S. E. J. Am. Chem. Soc. 2009, 131, 3349.

(7) Davaasuren, B.; Borrmann, H.; Dashjav, E.; Kreiner, G.; Widom, M.; Schnelle, W.; Wagner, F. R.; Kniep, R. *Angew. Chem., Int. Ed.* **2010**, 49, 5687.

(8) *Multiple Bonds Between Metal Atoms*, 3rd ed.; Cotton, F. A., Murillo, C. A., Walton, R. A., Eds.; Springer: New York, 2005.

(9) Stadelmaier, H. H.; Park, H. K. Z. Metallkd. 1981, 72, 417.

(10) A CeNiC₂-type GdFeC₂ phase has also been reported. See: Jeitschko, W.; Gerss, M. H. J. Less-Common Met. **1986**, 116, 147.

(11) Crystals of another phase having an Fe-centered orthorhombic cell with a = 9.24 Å, b = 16.02 Å, and c = 31.73 Å were also obtained in some samples. The appearance of this phase was traced to brief exposure of the arc-melted samples to air before annealing. Carefully protecting the pellets from air exposure led to an enhanced yield of the trigonal phase and no observable formation of the orthorhombic one. Our characterization of this secondary phase is ongoing.

(12) (a) Oszlányi, G.; Sütő, A. Acta Crystallogr. 2004, A60, 134.
(b) Oszlányi, G.; Sütő, A. Acta Crystallogr. 2005, A61, 147. (c) Palatinus, L.; Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786.

(13) (a) Hendricks, S. B.; Kosting, P. R. Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem. **1930**, 74, 511. (b) Chen, L.; Corbett, J. D. J. Am. Chem. Soc. **2003**, 125, 7794.

(14) Dashjav, E.; Kreiner, G.; Schnelle, W.; Wagner, F. R.; Kniep, R. Z. Anorg. Allg. Chem. **2004**, 630, 689.

(15) Formal charges are a bookkeeping tool and should not be mistaken as literal atomic charges. Bader charge analysis of the GGA–DFT results yielded Gd, Fe, and C atomic charges in the ranges +1.42 to +1.46, -0.20 to 0.05, and -1.44 to -1.35, respectively. Comparing these to the formal charges of Gd^{3+} , $Fe^{1.3+}$, and C^{4-} indicates that relative to this ionic counting scheme, the C anions back-donate electrons to Fe and Gd and perhaps Fe back-donates to Gd as well.

(16) (a) Block, G.; Jeitschko, W. Acta Crystallogr. 1984, A40, C239.
(b) Marusin, E. P.; Bodak, O. I.; Tsokol, A. O.; Fundamensky, V. S. Kristallografiya 1985, 30, 581. (c) Block, G.; Jeitschko, W. Inorg. Chem. 1986, 25, 279. (d) Deboer, F. R.; Huang, Y. K.; Zhang, Z. D.; Demooij, D. B.; Buschow, K. H. J. J. Magn. Magn. Mater. 1988, 72, 167.

(17) (a) Putnik, C. F.; Welter, J. J.; Stucky, G. D.; D'Aniello, M. J.; Sosinsky, B. A.; Kirner, J. F.; Muetterties, E. L. J. Am. Chem. Soc. 1978, 100, 4107. (b) Deng, H. B.; Shore, S. G. Inorg. Chem. 1992, 31, 2289. (c) Hess, C. R.; Weyhermuller, T.; Bill, E.; Wieghardt, K. Angew. Chem., Int. Ed. 2009, 48, 3703.

(18) Lei, H.; Guo, J. D.; Fettinger, J. C.; Nagase, S.; Power, P. P. J. Am. Chem. Soc. 2010, 132, 17399.

(19) Cotton, F. A.; Daniels, L. M.; Falvello, L. R.; Matonic, J. H.; Murillo, C. A. *Inorg. Chim. Acta* **1997**, *256*, 269.

(20) (a) Blöchl, P. E. Phys. Rev. B **1994**, 50, 17953. (b) Kresse, G.; Furthmüller, J. Phys. Rev. B **1996**, 54, 11169. (c) Kresse, G.; Furthmüller, J. Comput. Mater. Sci. **1996**, 6, 15. (d) Kresse, G.; Joubert, D. Phys. Rev. B **1999**, 59, 1758.

(21) Stacey, T. E.; Fredrickson, D. C. Dalton Trans. 2012, DOI: 10.1039/C2DT30298E.

(22) Dronskowski, R.; Blöchl, P. E. J. Phys. Chem. 1993, 97, 8617.

(23) Holland, P. L. Acc. Chem. Res. 2008, 41, 905.

(24) Greenwood, N. N.; Earnshaw, A. *Chemistry of the Elements*, 2nd ed.; Butterworth-Heinemann: Oxford, U.K., 1997.

(25) Magnetic, Electrical and Optical Properties and Applications of Intermetallic Compounds; Westbrook, J. H., Fleischer, R. L., Eds.; Wiley: West Sussex, U.K., 2000.

(26) Hall, M. B. Polyhedron 1987, 6, 679.

(27) Bernal, J. D. Nature 1959, 183, 141.

(28) Harris, N. A.; Hadler, A. B.; Fredrickson, D. C. Z. Anorg. Allg. Chem. 2011, 637, 1961.